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Background    Project Objectives and Scope

This study aimed to identify scale-up/integration issues in the use of 
modular anode-supported planar SOFC stacks for MW-class systems.

• Planar anode-supported SOFC design offers high power densities (lower 
cost) but implications are unclear for hybrid system operation. 

• Our objective was to evaluate the attractiveness of integrating SECA-style 
planar stacks into MW-scale systems, including hybridization.
– Define boundary conditions for MW-scale planar SOFC stack in the context of a 

MW-scale hybrid system
– Analyze cell performance and stresses to evaluate effects of operating conditions 

and size for radial-flow planar cells 
– Perform high-level analysis of system-level performance and cost of planar SOFC-

based hybrid systems at design point.

In particular, this study aimed to investigate the critical operational and 
performance issues to design and scale-up stacks for the MW-scale system.
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Background    Project Objectives and Scope

This presentation will discuss the implications of stack design and 
operating conditions for SOFC stack and system performance.

• We developed an anode-supported SOFC cell/stack model to assess the 
implications for scaling up designs for MW-scale systems

• In particular, the model was used to answer the following questions:
– How would internal reforming in the stack effect the power density, parasitic 

losses, and thermal stresses?
– How would the operating pressure affect the stack performance?
– How would the inlet air and fuel temperature affect the stack performance?
– What are the implications of area scale-up for stack stresses, fuel utilization, 

pressure drops, etc.?

Analysis requires definition of a stack architecture and relevant system 
configuration to define the system boundary conditions.
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Approach SOFC Model

For this investigation, we used our SOFC model, which helps estimate the 
performance parameters, to guide the stack / system design and scale-up. 

SOFC Model
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• Reactants 
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• Thermal
• Mechanical 

Stresses

• Inlet Temperature
• Operating 

Pressure
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Rates  
• Cell Voltage   

Operating Conditions

Fuel Cell Design
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Distribution
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Temperature

Performance parameters that 
influence stack and system 

design
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SOFC Modeling Methodology

The SOFC model accounts for all the relevant electrical, chemical, thermal, 
and mechanical phenomena, which influence cell performance.  

Interconnect 
(ferritic steel)

• Heat conduction
• Current 

conduction

Anode (Ni/YSZ) and cathode 
(LSM/YSZ) porous electrodes

• On-anode steam reforming and 
water-gas shift reaction

• Heat conduction
• Current conduction
• Species diffusion 

Anode and cathode 
reaction zones

• Electrochemical 
reactions

• Heat generation

Electrode 
Electrolyte 
Interface (EEA)

• Electrochemical & 
chemical reactions 

• Ion conduction
• Species diffusion 
• Heat generation 

and conduction 

Flow passages
• Heat convection
• Plug flow of gas

Electrolyte (YSZ)
• Ion conduction
• Heat conduction• LSM: Lanthanum Strontium Manganate

• YSZ: Yttrium Stabilized Zirconia
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Stack Architecture

We considered a circular stack architecture for this investigation.  

Anode (750 µm)

Electrolyte (10 µm)

Cathode (100 µm)

Interconnect (2 mm)

Fuel

Combustion

Radial Planar AnodeRadial Planar Anode--Supported SOFC SchematicsSupported SOFC Schematics

Cell/Stack Structure Flow Field

Air

Unspent fuel

Note:  Manifolding design not in detail   

Air



6Wpt_3rdDOE/UN_Hybrid_Pow_Sys_Conf_2003-05-13

SOFC Modeling Results    Sample Results 

The results demonstrated that reduced cell operating temperature might 
allow internal reforming without causing damaging stresses. 

Power Density Distribution, mW/cm2

Average Power Density 
0.43 W/cm2

Temperature  Distribution, °C

Stress Distribution, Pa
Operating Conditions

Maximum Stress in Anode 1.7 MPa

Pressure 1 bar
Fuel utilization 90%
Internal reforming 100%
Inlet gas temperatures 650°C
Exit gas temperatures 800°C

Contact resistance No
Cell radius 5 cm
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SOFC Modeling Results    Sensitivity Analysis Conditions   

A sensitivity analysis was performed over a range of parameters and the 
results were used for the design of the SOFC stack module.

Parameter Value

Contact resistance (Ω cm2) 0 , 0.1

Conditions used for sensitivity analysis

Pressure (bar) 1, 3*

Fuel utilization (%) 50, 90*

Internal reforming  (%) 50, 100*

Inlet gas temperatures (°C) 650*, 700

Exit gas temperatures (°C) 800* , 900

Cell radius (cm) 5, 18*

Anode thickness active for 
methane reforming (µm) 65*, 300

* base case values
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SOFC Modeling Sensitivity Analysis      Internal Reforming

Model results show that 100% internal reforming leads to lower stress 
levels than than either partial pre-reforming or pure H2.  
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SOFC Modeling Sensitivity Analysis      Operating Temperature

Power density decreases by approximately 25% when the fuel cell 
temperature range is reduced from 650-800°C to 550-700°C.
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SOFC Modeling Sensitivity Analysis      Fuel Utilization

Under high fuel utilization the average power density decreases and stress 
in anode increases compared with low utilization scenarios.
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SOFC Modeling Sensitivity Analysis      Operating Pressure

1 bar 3 bar 10 bar
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SOFC Modeling Sensitivity Analysis      Cell Size

The stress levels in the cell are not strongly influenced by cell diameter 
indicating that cells larger than 5 cm are feasible, however the power 
density is reduced. 

Effect of the Cell Size
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SOFC Modeling Results    Base Case Conditions   

The base case SOFC stack operating parameters were assumed for 
conceptual system modeling.

Parameter Value

Operating Pressure 3 bar

Inlet Temperatures 
(Fuel and Air) 650°C

Maximum Stack 
Temperature 800°C

Extent of Internal 
Reforming 100%

Fuel Utilization 90%

Contact Resistance No

SOFC Stack Operating 
Parameters for System 

Modeling/Design

Fuel Cell Radius 18 cm

Parameter Value

Average power 
density

Base Case Results

505 mW/cm2

Excess air 
requirement

Peak power density 645 mW/cm2

392

Temperature 
change across the 
stack

170°C

Maximum stress in 
anode 166 MPa
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System Architecture

Direct SOFC/GT hybrid system based on base case SOFC operating 
conditions was modeled.

System Configuration
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System Design    Thermodynamic Modeling    Results

Hybrid system performance is based on a base case SOFC operating point 
and is not optimized.

Parameter Value
Compressor Adiabatic Efficiency

System Operating Conditions

75%
Turbine Adiabatic Efficiency 85%
SOFC Fuel Utilization 90%
SOFC Operating Voltage 0.7 V
Excess Air 390%
Steam/Carbon 2.3

Parameter Value
SOFC Efficiency

Modeled Hybrid System Performance

51%
Overall System Efficiency 64%
Turbine Output Fraction 20%
Auxiliary Combustor Fuel Fraction* 7%

* The model shows auxiliary fuel is required to ensure appropriate inlet temperature regime for the SOFC stack. 
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Summary 

The integrated SOFC model can be used to quantify the implications of the 
scale-up of anode-supported SOFC cells and stacks.

• Anode-supported SOFC stacks operating at modest temperatures (650-
850°C) provide an attractive option for use in MW-class SOFC systems.

• The sensitivity analysis revealed a number of advantages for the planar 
anode-supported SOFC technology: 
– Reduced cell operating temperature might allow internal reforming without causing 

damaging stresses
– The stress levels in the cell are not strongly influenced by cell diameter indicating 

that cells larger than 5 cm are feasible

• In particular, the model allows to investigate the critical operational and 
performance issues to design stacks for the MW-scale systems.
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Appendix
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SOFC Modeling Sensitivity Analysis      Cell Size

Local temperature gradient is higher in a small cell, which is likely to be the 
reason for lower maximum stress in the anode in a larger cell.  

Effect of the Cell Size

Contact resistance No

Operating Conditions
Pressure 3 bar
Fuel utilization 90%
Internal reforming 100%
Inlet gas temperatures 650°C
Exit gas temperatures 800°C
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